11 research outputs found

    A Fourier Analysis Based Attack against Physically Unclonable Functions

    Get PDF
    Electronic payment systems have leveraged the advantages offered by the RFID technology, whose security is promised to be improved by applying the notion of Physically Unclonable Functions (PUFs). Along with the evolution of PUFs, numerous successful attacks against PUFs have been proposed in the literature. Among these are machine learning (ML) attacks, ranging from heuristic approaches to provable algorithms, that have attracted great attention. Our paper pursues this line of research by introducing a Fourier analysis based attack against PUFs. More specifically, this paper focuses on two main aspects of ML attacks, namely being provable and noise tolerant. In this regard, we prove that our attack is naturally integrated into a provable Probably Approximately Correct (PAC) model. Moreover, we show that our attacks against known PUF families are effective and applicable even in the presence of noise. Our proof relies heavily on the intrinsic properties of these PUF families, namely arbiter, Ring Oscillator (RO), and Bistable Ring (BR) PUF families. We believe that our new style of ML algorithms, which take advantage of the Fourier analysis principle, can offer better measures of PUF security

    SVD-based Ghost Circuitry Detection

    No full text
    Abstract. Ghost circuitry (GC) insertion is the malicious addition of hardware in the specification and/or implementation of an IC by an attacker intending to change circuit functionality. There are numerous GC insertion sources, including untrusted foundries, synthesis tools and libraries, testing and verification tools, and configuration scripts. Moreover, GC attacks can greatly compromise the security and privacy of hardware users, either directly or through interaction with pertinent systems, application software, or with data. GC detection is a particularly difficult task in modern and pending deep submicron technologies due to intrinsic manufacturing variability. Here, we provide algebraic and statistical approaches for the detection of ghost circuitry. A singular value decomposition (SVD)-based technique for gate characteristic recovery is applied to solve a system of equations created using fast and non-destructive measurements of leakage power and/or delay. This is then combined with statistical constraint manipulation techniques to detect embedded ghost circuitry. The effectiveness of the approach is demonstrated on the ISCAS 85 benchmarks
    corecore